Research & Development

The development of our Click Activated Protodrugs (CAP™) Platform, a new therapeutic modality based on click chemistry, utilizes the biocompatible chemical reaction between an attenuated trans-cyclooctene-modified protodrug and a tetrazine-modified biopolymer.

This platform can be used with various treatments to deliver drugs to treat many diseases and conditions.

CAP publications

January 2021

SQ3370 Activates Cytotoxic Drug via Click Chemistry at Tumor and Elicits Sustained Responses in Injected & Non-injected Lesions

While systemic immuno-oncology therapies have shown remarkable success, only a limited subset of patients benefit from them. Our Click Activated Protodrugs Against Cancer (CAPAC™) Platform is a click chemistry-based approach that activates cancer drugs at a specific tumor with minimal systemic toxicity. CAPAC Platform is agnostic to tumor characteristics that can vary across patients and hence applicable to several types of tumors.

Read more

January 2021

Click Activated Protodrugs Against Cancer Increase the Therapeutic Potential of Chemotherapy through Local Capture and Activation

A desired goal of targeted cancer treatments is to achieve high tumor specificity with minimal side effects. Despite recent advances, this remains difficult to achieve in practice as most approaches rely on biomarkers or physiological differences between malignant and healthy tissue, and thus benefit only a subset of patients in need of treatment. To address this unmet need, we introduced a Click Activated Protodrugs Against Cancer (CAPAC) platform that enables targeted activation of drugs at a specific site in the body, i.e., a tumor. In vitro evaluation of cytotoxicity, solubility, stability and activation rendered the protodrug of doxorubicin, SQP33, as the most promising candidate for in vivo studies. Studies in rodents show that a single injection of the tetrazine-modified biopolymer, SQL70, efficiently captures SQP33 protodrug doses given at 10.8-times the maximum tolerated dose of conventional doxorubicin with greatly reduced systemic toxicity.

Read more

July 2016

In Vivo Bioorthogonal Chemistry Enables Local Hydrogel and Systemic Pro-Drug To Treat Soft Tissue Sarcoma

The ability to activate drugs only at desired locations avoiding systemic immunosuppression and other dose limiting toxicities is highly desirable. Here we present a new approach, named local drug activation, that uses bioorthogonal chemistry to concentrate and activate systemic small molecules at a location of choice. This method is independent of endogenous cellular or environmental markers and only depends on the presence of a preimplanted biomaterial near a desired site (e.g., tumor). We demonstrate the clear therapeutic benefit with minimal side effects of this approach in mice over systemic therapy using a doxorubicin pro-drug against xenograft tumors of a type of soft tissue sarcoma (HT1080).

Read more